Audio Hardware

Transducers
Microphone Types
Directional Response
Transducer

• A device that converts one form of energy into another, analogous form of energy.
 – Microphones
 – Tape recorders
 – Speakers
 – Musical instruments
 – The ear
Digital Audio Transducers

• A/D converter (ADC)
 – converts electrical current into digital signals

• D/A converter (DAC)
 – converts digital signals back into electrical current
The Audio Recording Path

Recording (input)

– Source > Mic > Preamp > ADC > Media

Playback (output)

– Media > DAC > Amp > Speakers > Ear
The Audio Recording Path
Microphones

• Three basic types:
 – Dynamic
 – Ribbon
 – Condenser
Dynamic Microphones

– a diaphragm attached to a coil of wire that’s suspended in a magnetic field
– SP waves move the cone
– the attached coil of wire moves in the field of a magnet
– produces an electrical signal
Dynamic Mics

• Advantages:
 – Rugged - can take a lot of abuse
 – Relatively cheap
 – No external power needed
 – Certain sound coloring, both good and bad

• Disadvantages:
 – response isn’t as flat as other mic types

• Classic Example: Shure SM57
Shure SM57
Frequency Response Chart – Shure SM57
Ribbon Microphones

• The active element is the ribbon
 – very thin corrugated aluminum
 – mounted between the poles of a magnet
• SP waves move the metallic ribbon in the magnetic field, generating a voltage between the ends of the ribbon
Ribbon Mics

• Advantages:
 – Add "warmth" to the tone by accenting lows when close-mic’ed

• Disadvantages:
 – Tendency to accent lows sometimes produces a "boomy" bass
 – Older models are delicate, very susceptible to wind noise
 – Not suitable for outside use unless very well shielded

• Classic Example: RCA 44B
RCA 44B
Frequency Response Chart – RCA 44B
Condenser Microphones

• consists of two thin plates or membranes
• Principle: SP waves change the spacing between a thin metallic membrane and the stationary back plate, producing a proportional electrical signal
Condenser Mics

• Require power to operate
 – older models used a battery pack or power supply.

• Most modern condensers use **Phantom Power**
 – supplied by a console or mixer
 • may be an on/off switch per channel or group of channels
 • may be a master switch
 – sends a voltage of +48V down the mic cable

• Classic Example: **Neumann U47**
Condenser Mics

• Advantages:
 – Very sensitive
 – Wide frequency response - mic of choice for many recording apps
 – Switchable polar patterns

• Disadvantages:
 – More expensive than dynamic mics
 – Very sensitive to humidity
Neumann U47
Frequency Response Chart – Neumann U87
Frequency Response Chart – Shure SM57
Frequency Response Chart – RCA 44B
Directional Response

• How a microphone responds to sound coming in from different directions
• Described by the polar pattern
Omnidirectional Response Pattern

- nearly equally sensitive to sound coming in all directions
- omnis have the best low end of any polar response
Directional Response Patterns

• Cardioid
 – most commonly used directional pattern
 – has a fair degree of lateral (side) response
 – sound is rejected from the back
• **Hypercardioid**
 - front response is more directional than the cardioid
 - some rear axis response
 - less lateral response than cardioid
• **Figure Eight (Bidirectional, Blumlein)**
 – front response is more directional than the hypercardioid
 – equal front and rear response
 – rejects sound from the sides
Preamps

• Mics put out a very low level signal (mic level)
• In order for this signal to be useful it must be boosted
• Accomplished by using a mic preamp
• Quality of the preamp is important to the overall sound